

django-mongoengine-filter

django-mongoengine-filter is a reusable Django application for allowing
users to filter mongoengine querysets [http://mongoengine-odm.readthedocs.org/apireference.html#module-mongoengine.queryset] dynamically. It’s very similar to
popular django-filter library and is designed to be used as a drop-in
replacement (as much as it’s possible) strictly tied to MongoEngine.

Full documentation on Read the docs [https://django-mongoengine-filter.readthedocs.org/].

[image: PyPI Version]
 [https://pypi.python.org/pypi/django-mongoengine-filter][image: Supported Python versions]
 [https://pypi.python.org/pypi/django-mongoengine-filter/][image: Build Status]
 [https://github.com/barseghyanartur/django-mongoengine-filter/actions][image: Documentation Status]
 [http://django-mongoengine-filter.readthedocs.io/en/latest/?badge=latest][image: GPL-2.0-only OR LGPL-2.1-or-later]
 [https://github.com/barseghyanartur/django-mongoengine-filter/#License][image: Coverage]
 [https://coveralls.io/github/barseghyanartur/django-mongoengine-filter?branch=master]
Requirements

	Python 3.7, 3.8, 3.9, 3.10 or 3.11.

	MongoDB 3.x, 4.x, 5.x.

	Django 2.2, 3.0, 3.1, 3.2, 4.0 or 4.1.

Installation

Install using pip:

pip install django-mongoengine-filter

Or latest development version:

pip install https://github.com/barseghyanartur/django-mongoengine-filter/archive/master.zip

Usage

Sample document

from mongoengine import fields, document
from .constants import PROFILE_TYPES, PROFILE_TYPE_FREE, GENDERS, GENDER_MALE

class Person(document.Document):

 name = fields.StringField(
 required=True,
 max_length=255,
 default="Robot",
 verbose_name="Name"
)
 age = fields.IntField(required=True, verbose_name="Age")
 num_fingers = fields.IntField(
 required=False,
 verbose_name="Number of fingers"
)
 profile_type = fields.StringField(
 required=False,
 blank=False,
 null=False,
 choices=PROFILE_TYPES,
 default=PROFILE_TYPE_FREE,
)
 gender = fields.StringField(
 required=False,
 blank=False,
 null=False,
 choices=GENDERS,
 default=GENDER_MALE
)

 def __str__(self):
 return self.name

Sample filter

import django_mongoengine_filter

class PersonFilter(django_mongoengine_filter.FilterSet):

 profile_type = django_mongoengine_filter.StringFilter()
 ten_fingers = django_mongoengine_filter.MethodFilter(
 action="ten_fingers_filter"
)

 class Meta:
 model = Person
 fields = ["profile_type", "ten_fingers"]

 def ten_fingers_filter(self, queryset, name, value):
 if value == 'yes':
 return queryset.filter(num_fingers=10)
 return queryset

Sample view

With function-based views:

def person_list(request):
 filter = PersonFilter(request.GET, queryset=Person.objects)
 return render(request, "dfm_app/person_list.html", {"object_list": filter.qs})

Or class-based views:

from django_mongoengine_filter.views import FilterView

class PersonListView(FilterView):

 filterset_class = PersonFilter
 template_name = "dfm_app/person_list.html"

Sample template

{% for obj in object_list %}
 {{ obj.name }} - {{ obj.age }}
{% endfor %}

Sample requests

	GET /persons/

	GET /persons/?profile_type=free&gender=male

	GET /persons/?profile_type=free&gender=female

	GET /persons/?profile_type=member&gender=female

	GET /persons/?ten_fingers=yes

Development

Testing

To run tests in your working environment type:

pytest -vrx

To test with all supported Python versions type:

tox

Running MongoDB

The easiest way is to run it via Docker:

docker pull mongo:latest
docker run -p 27017:27017 mongo:latest

Writing documentation

Keep the following hierarchy.

=====
title
=====

header
======

sub-header

sub-sub-header
~~~~~~~~~~~~~~

sub-sub-sub-header
^^^^^^^^^^^^^^^^^^

sub-sub-sub-sub-header
++++++++++++++++++++++

sub-sub-sub-sub-sub-header
**************************








License

GPL-2.0-only OR LGPL-2.1-or-later



Support

For any security issues contact me at the e-mail given in the Author section.

For overall issues, go to GitHub [https://github.com/barseghyanartur/django-mongoengine-filter/issues].



Author

Artur Barseghyan <artur.barseghyan@gmail.com>



Documentation

Contents:



	django-mongoengine-filter
	Requirements

	Installation

	Usage

	Development
	Testing

	Running MongoDB

	Writing documentation





	License

	Support

	Author

	Documentation
	Filter Reference
	Filters
	CharFilter

	BooleanFilter

	ChoiceFilter

	MultipleChoiceFilter

	DateFilter

	DateTimeFilter

	TimeFilter

	ModelChoiceFilter

	ModelMultipleChoiceFilter

	NumberFilter

	RangeFilter

	DateRangeFilter

	AllValuesFilter





	Core Arguments
	name

	label

	widget

	action

	lookup_type

	distinct

	exclude

	**kwargs









	Widget Reference
	LinkWidget





	Using django-mongoengine-filter
	The model

	The filter

	The view

	The URL conf

	The template

	Other Meta options
	Ordering using order_by

	Custom Forms using form





	Non-Meta options
	strict





	Overriding FilterSet methods
	get_ordering_field()





	Generic View





	Release history and notes
	0.4.1

	0.4.0

	0.3.5

	0.3.4

	0.3.3

	0.3.2

	0.3.1

	0.3

	0.2

	0.1









	Indices and tables





	Filter Reference
	Filters
	CharFilter

	BooleanFilter

	ChoiceFilter

	MultipleChoiceFilter

	DateFilter

	DateTimeFilter

	TimeFilter

	ModelChoiceFilter

	ModelMultipleChoiceFilter

	NumberFilter

	RangeFilter

	DateRangeFilter

	AllValuesFilter





	Core Arguments
	name

	label

	widget

	action

	lookup_type

	distinct

	exclude

	**kwargs









	Widget Reference
	LinkWidget





	Using django-mongoengine-filter
	The model

	The filter

	The view

	The URL conf

	The template

	Other Meta options
	Ordering using order_by

	Custom Forms using form





	Non-Meta options
	strict





	Overriding FilterSet methods
	get_ordering_field()





	Generic View





	Release history and notes
	0.4.1

	0.4.0

	0.3.5

	0.3.4

	0.3.3

	0.3.2

	0.3.1

	0.3

	0.2

	0.1











Indices and tables


	Index


	Module Index


	Search Page








            

          

      

      

    

  

    
      
          
            
  
Filter Reference

This is a reference document with a list of the filters and their arguments.


Filters


CharFilter

This filter does simple character matches, used with CharField and
TextField by default.



BooleanFilter

This filter matches a boolean, either True or False, used with
BooleanField and NullBooleanField by default.



ChoiceFilter

This filter matches an item of any type by choices, used with any field that
has choices.



MultipleChoiceFilter

The same as ChoiceFilter except the user can select multiple items and it
selects the OR of all the choices.



DateFilter

Matches on a date.  Used with DateField by default.



DateTimeFilter

Matches on a date and time.  Used with DateTimeField by default.



TimeFilter

Matches on a time.  Used with TimeField by default.



ModelChoiceFilter

Similar to a ChoiceFilter except it works with related models, used for
ForeignKey by default.



ModelMultipleChoiceFilter

Similar to a MultipleChoiceFilter except it works with related models, used
for ManyToManyField by default.



NumberFilter

Filters based on a numerical value, used with IntegerField, FloatField,
and DecimalField by default.



RangeFilter

Filters where a value is between two numerical values.



DateRangeFilter

Filter similar to the admin changelist date one, it has a number of common
selections for working with date fields.



AllValuesFilter

This is a ChoiceFilter whose choices are the current values in the
database.  So if in the DB for the given field you have values of 5, 7, and 9
each of those is present as an option.  This is similar to the default behavior
of the admin.




Core Arguments


name

The name of the field this filter is supposed to filter on, if this is not
provided it automatically becomes the filter’s name on the FilterSet.



label

The label as it will apear in the HTML, analogous to a form field’s label
argument.



widget

The django.form Widget class which will represent the Filter.  In addition
to the widgets that are included with Django that you can use there are
additional ones that django-filter provides which may be useful:



	django_filters.widgets.LinkWidget – this displays the options in a
manner similar to the way the Django Admin does, as a series of links.
The link for the selected option will have class="selected".









action

An optional callable that tells the filter how to handle the queryset. It
receives a QuerySet and the value to filter on and should return a
Queryset that is filtered appropriately.



lookup_type

The type of lookup that should be performed using the Django ORM.  All the
normal options are allowed, and should be provided as a string.  You can also
provide either None or a list or a tuple.  If None is provided,
then the user can select the lookup type from all the ones available in the
Django ORM.  If a list or tuple is provided, then the user can select
from those options.



distinct

A boolean value that specifies whether the Filter will use distinct on the
queryset. This option can be used to eliminate duplicate results when using
filters that span related models. Defaults to False.



exclude

A boolean value that specifies whether the Filter should use filter
or exclude on the queryset. Defaults to False.



**kwargs

Any extra keyword arguments will be provided to the accompanying form Field.
This can be used to provide arguments like choices or queryset.






            

          

      

      

    

  

    
      
          
            
  
Widget Reference

This is a reference document with a list of the provided widgets and their
arguments.


LinkWidget

This widget renders each option as a link, instead of an actual <input>.  It has
one method that you can override for additional customization.
option_string() should return a string with 3 Python keyword argument
placeholders:


	attrs: This is a string with all the attributes that will be on the
final <a> tag.


	query_string: This is the query string for use in the href
option on the <a> element.


	label: This is the text to be displayed to the user.








            

          

      

      

    

  

    
      
          
            
  
Using django-mongoengine-filter

django-mongoengine-filter provides a simple way to filter down a queryset based on
parameters a user provides.  Say we have a Product model and we want to let
our users filter which products they see on a list page.


The model

Let’s start with our model:

from django.db import models

class Product(models.Model):
    name = models.CharField(max_length=255)
    price = models.DecimalField()
    description = models.TextField()
    release_date = models.DateField()
    manufacturer = models.ForeignKey(Manufacturer)







The filter

We have a number of fields and we want to let our users filter based on the
price or the release_date.  We create a FilterSet for this:

import django_mongoengine_filter

class ProductFilter(django_mongoengine_filter.FilterSet):
    class Meta:
        model = Product
        fields = ['price', 'release_date']





As you can see this uses a very similar API to Django’s ModelForm.  Just
like with a ModelForm we can also override filters, or add new ones using a
declarative syntax:

import django_filters

class ProductFilter(django_mongoengine_filter.FilterSet):
    price = django_filters.NumberFilter(lookup_type='lt')
    class Meta:
        model = Product
        fields = ['price', 'release_date']





Filters take a lookup_type argument which specifies what lookup type to
use with Django’s ORM.  So here when a user entered a price it would show all
Products with a price less than that.

It’s quite common to forget to set lookup type for `CharField`s/`TextField`s
and wonder why search for “foo” doesn’t return result for “foobar”. It’s because
default lookup type is exact text, but you probably want `icontains` lookup
field.

Items in the fields sequence in the Meta class may include
“relationship paths” using Django’s __ syntax to filter on fields on a
related model:

class ProductFilter(django_mongoengine_filter.FilterSet):
    class Meta:
        model = Product
        fields = ['manufacturer__country']





Filters also take any arbitrary keyword arguments which get passed onto the
django.forms.Field initializer.  These extra keyword arguments get stored
in Filter.extra, so it’s possible to override the initializer of a
FilterSet to add extra ones:

class ProductFilter(django_mongoengine_filter.FilterSet):
    class Meta:
        model = Product
        fields = ['manufacturer']

    def __init__(self, *args, **kwargs):
        super(ProductFilter, self).__init__(*args, **kwargs)
        self.filters['manufacturer'].extra.update(
            {'empty_label': 'All Manufacturers'})





Like django.contrib.admin.ModelAdmin does it is possible to override
default filters for all the models fields of the same kind using
filter_overrides:

class ProductFilter(django_mongoengine_filter.FilterSet):
    filter_overrides = {
        models.CharField: {
            'filter_class': django_filters.CharFilter,
            'extra': lambda f: {
                'lookup_type': 'icontains',
            }
        }
    }

    class Meta:
        model = Product
        fields = ['name']







The view

Now we need to write a view:

def product_list(request):
    f = ProductFilter(request.GET, queryset=Product.objects)
    return render_to_response('my_app/template.html', {'filter': f})





If a queryset argument isn’t provided then all the items in the default manager
of the model will be used.



The URL conf

We need a URL pattern to call the view:

re_path(r'^list$', views.product_list)







The template

And lastly we need a template:

{% extends "base.html" %}

{% block content %}
    <form action="" method="get">
        {{ filter.form.as_p }}
        <input type="submit" />
    </form>
    {% for obj in filter %}
        {{ obj.name }} - ${{ obj.price }}<br />
    {% endfor %}
{% endblock %}





And that’s all there is to it!  The form attribute contains a normal
Django form, and when we iterate over the FilterSet we get the objects in
the resulting queryset.



Other Meta options


Ordering using order_by

You can allow the user to control ordering by providing the
order_by argument in the Filter’s Meta class.  order_by can be either a
list or tuple of field names, in which case those are the options, or
it can be a bool which, if True, indicates that all fields that
the user can filter on can also be sorted on. An example or ordering using a list:

import django_filters

class ProductFilter(django_filters.FilterSet):

    price = django_filters.NumberFilter(lookup_type='lt')

    class Meta:
        model = Product
        fields = ['price', 'release_date']
        order_by = ['price']





If you want to control the display of items in order_by, you can set it to
a list or tuple of 2-tuples in the format (field_name, display_name).
This lets you override the displayed names for your ordering fields:

order_by = (
    ('name', 'Company Name'),
    ('average_rating', 'Stars'),
)





Note that the default query parameter name used for ordering is o.  You
can override this by setting an order_by_field attribute on the
FilterSet class to the string value you would like to use.



Custom Forms using form

The inner Meta class also takes an optional form argument.  This is a
form class from which FilterSet.form will subclass.  This works similar to
the form option on a ModelAdmin.




Non-Meta options

Note that these options do not go in the Meta class, they are specified directly
in your FilterSet class.


strict

The strict option controls whether results are returned when an invalid
value is specified by the user for any filter field. By default, strict is
set to True meaning that an empty queryset is returned if any field contains
an invalid value. You can loosen this behavior by setting strict to
False which will effectively ignore a filter field if its value is invalid.




Overriding FilterSet methods


get_ordering_field()

If you want to use a custom widget, or in any other way override the ordering
field you can override the get_ordering_field() method on a FilterSet.
This method just needs to return a Form Field.

Ordering on multiple fields, or other complex orderings can be achieved by
overriding the Filterset.get_order_by() method. This is passed the selected
order_by value, and is expected to return an iterable of values to pass to
QuerySet.order_by. For example, to sort a User table by last name, then
first name:

class UserFilter(django_filters.FilterSet):
    class Meta:
        order_by = (
            ('username', 'Username'),
            ('last_name', 'Last Name')
        )

    def get_order_by(self, order_value):
        if order_value == 'last_name':
            return ['last_name', 'first_name']
        return super(UserFilter, self).get_order_by(order_value)








Generic View

In addition to the above usage there is also a class-based generic view
included in django-filter, which lives at django_filters.views.FilterView.
You must provide either a model or filterset_class argument, similar to
ListView in Django itself:

# urls.py
from django.urls import re_path
from django_filters.views import FilterView
from myapp.models import Product

urlpatterns = [
    re_path(r'^list/$', FilterView.as_view(model=Product)),
]





You must provide a template at <app>/<model>_filter.html which gets the
context parameter filter.  Additionally, the context will contain
object_list which holds the filtered queryset.

A legacy functional generic view is still included in django-filter, although
its use is deprecated.  It can be found at
django_filters.views.object_filter.  You must provide the same arguments
to it as the class based view:

# urls.py
from django.urls import re_path
from myapp.models import Product

urlpatterns = [
    re_path(r'^list/$', 'django_filters.views.object_filter', {'model': Product}),
]





The needed template and its context variables will also be the same as the
class-based view above.





            

          

      

      

    

  

    
      
          
            
  
Release history and notes

Sequence based identifiers [http://en.wikipedia.org/wiki/Software_versioning#Sequence-based_identifiers]
are used for versioning (schema follows below):

major.minor[.revision]






	It’s always safe to upgrade within the same minor version (for example, from
0.3 to 0.3.4).


	Minor version changes might be backwards incompatible. Read the
release notes carefully before upgrading (for example, when upgrading from
0.3.4 to 0.4).


	All backwards incompatible changes are mentioned in this document.





0.4.1

2023-02-23


	Fix issue with adding help_text.






0.4.0

2022-12-24


	Drop support for Python < 3.7.


	Drop support for Django < 2.2.


	Tested against Python 3.9, 3.10 and 3.11.


	Tested against Django 3.1, 3.2, 4.0 and 4.1.


	Apply black, isort and ruff.


	Fix GitHub CI.






0.3.5

2020-03-23


	Tested against Python 3.8.


	Tested against Django 3.0.






0.3.4

2019-04-04


	Using lazy queries where possible.






0.3.3

2019-04-02


	Tested against Django 2.2.






0.3.2

2019-04-01


	Fixes in class-based views.


	Addition to docs.






0.3.1

2019-03-26


	More tests.


	Addition to docs.






0.3

2019-03-25

Got status beta


Note

Namespace changed from django_filters_mongoengine to
django_mongoengine_filter. Modify your imports accordingly.




	Clean up.


	Added docs, manifest, tox.






0.2

2019-03-25


	Working method filters.






0.1

2019-03-25


	Initial alpha release.








            

          

      

      

    

  

    
      
          
            
  
Filter Reference

This is a reference document with a list of the filters and their arguments.


Filters


CharFilter

This filter does simple character matches, used with CharField and
TextField by default.



BooleanFilter

This filter matches a boolean, either True or False, used with
BooleanField and NullBooleanField by default.



ChoiceFilter

This filter matches an item of any type by choices, used with any field that
has choices.



MultipleChoiceFilter

The same as ChoiceFilter except the user can select multiple items and it
selects the OR of all the choices.



DateFilter

Matches on a date.  Used with DateField by default.



DateTimeFilter

Matches on a date and time.  Used with DateTimeField by default.



TimeFilter

Matches on a time.  Used with TimeField by default.



ModelChoiceFilter

Similar to a ChoiceFilter except it works with related models, used for
ForeignKey by default.



ModelMultipleChoiceFilter

Similar to a MultipleChoiceFilter except it works with related models, used
for ManyToManyField by default.



NumberFilter

Filters based on a numerical value, used with IntegerField, FloatField,
and DecimalField by default.



RangeFilter

Filters where a value is between two numerical values.



DateRangeFilter

Filter similar to the admin changelist date one, it has a number of common
selections for working with date fields.



AllValuesFilter

This is a ChoiceFilter whose choices are the current values in the
database.  So if in the DB for the given field you have values of 5, 7, and 9
each of those is present as an option.  This is similar to the default behavior
of the admin.




Core Arguments


name

The name of the field this filter is supposed to filter on, if this is not
provided it automatically becomes the filter’s name on the FilterSet.



label

The label as it will apear in the HTML, analogous to a form field’s label
argument.



widget

The django.form Widget class which will represent the Filter.  In addition
to the widgets that are included with Django that you can use there are
additional ones that django-filter provides which may be useful:



	django_filters.widgets.LinkWidget – this displays the options in a
manner similar to the way the Django Admin does, as a series of links.
The link for the selected option will have class="selected".









action

An optional callable that tells the filter how to handle the queryset. It
receives a QuerySet and the value to filter on and should return a
Queryset that is filtered appropriately.



lookup_type

The type of lookup that should be performed using the Django ORM.  All the
normal options are allowed, and should be provided as a string.  You can also
provide either None or a list or a tuple.  If None is provided,
then the user can select the lookup type from all the ones available in the
Django ORM.  If a list or tuple is provided, then the user can select
from those options.



distinct

A boolean value that specifies whether the Filter will use distinct on the
queryset. This option can be used to eliminate duplicate results when using
filters that span related models. Defaults to False.



exclude

A boolean value that specifies whether the Filter should use filter
or exclude on the queryset. Defaults to False.



**kwargs

Any extra keyword arguments will be provided to the accompanying form Field.
This can be used to provide arguments like choices or queryset.






            

          

      

      

    

  

    
      
          
            
  
Widget Reference

This is a reference document with a list of the provided widgets and their
arguments.


LinkWidget

This widget renders each option as a link, instead of an actual <input>.  It has
one method that you can override for additional customization.
option_string() should return a string with 3 Python keyword argument
placeholders:


	attrs: This is a string with all the attributes that will be on the
final <a> tag.


	query_string: This is the query string for use in the href
option on the <a> element.


	label: This is the text to be displayed to the user.








            

          

      

      

    

  

    
      
          
            
  
Using django-mongoengine-filter

django-mongoengine-filter provides a simple way to filter down a queryset based on
parameters a user provides.  Say we have a Product model and we want to let
our users filter which products they see on a list page.


The model

Let’s start with our model:

from django.db import models

class Product(models.Model):
    name = models.CharField(max_length=255)
    price = models.DecimalField()
    description = models.TextField()
    release_date = models.DateField()
    manufacturer = models.ForeignKey(Manufacturer)







The filter

We have a number of fields and we want to let our users filter based on the
price or the release_date.  We create a FilterSet for this:

import django_mongoengine_filter

class ProductFilter(django_mongoengine_filter.FilterSet):
    class Meta:
        model = Product
        fields = ['price', 'release_date']





As you can see this uses a very similar API to Django’s ModelForm.  Just
like with a ModelForm we can also override filters, or add new ones using a
declarative syntax:

import django_filters

class ProductFilter(django_mongoengine_filter.FilterSet):
    price = django_filters.NumberFilter(lookup_type='lt')
    class Meta:
        model = Product
        fields = ['price', 'release_date']





Filters take a lookup_type argument which specifies what lookup type to
use with Django’s ORM.  So here when a user entered a price it would show all
Products with a price less than that.

It’s quite common to forget to set lookup type for `CharField`s/`TextField`s
and wonder why search for “foo” doesn’t return result for “foobar”. It’s because
default lookup type is exact text, but you probably want `icontains` lookup
field.

Items in the fields sequence in the Meta class may include
“relationship paths” using Django’s __ syntax to filter on fields on a
related model:

class ProductFilter(django_mongoengine_filter.FilterSet):
    class Meta:
        model = Product
        fields = ['manufacturer__country']





Filters also take any arbitrary keyword arguments which get passed onto the
django.forms.Field initializer.  These extra keyword arguments get stored
in Filter.extra, so it’s possible to override the initializer of a
FilterSet to add extra ones:

class ProductFilter(django_mongoengine_filter.FilterSet):
    class Meta:
        model = Product
        fields = ['manufacturer']

    def __init__(self, *args, **kwargs):
        super(ProductFilter, self).__init__(*args, **kwargs)
        self.filters['manufacturer'].extra.update(
            {'empty_label': 'All Manufacturers'})





Like django.contrib.admin.ModelAdmin does it is possible to override
default filters for all the models fields of the same kind using
filter_overrides:

class ProductFilter(django_mongoengine_filter.FilterSet):
    filter_overrides = {
        models.CharField: {
            'filter_class': django_filters.CharFilter,
            'extra': lambda f: {
                'lookup_type': 'icontains',
            }
        }
    }

    class Meta:
        model = Product
        fields = ['name']







The view

Now we need to write a view:

def product_list(request):
    f = ProductFilter(request.GET, queryset=Product.objects)
    return render_to_response('my_app/template.html', {'filter': f})





If a queryset argument isn’t provided then all the items in the default manager
of the model will be used.



The URL conf

We need a URL pattern to call the view:

re_path(r'^list$', views.product_list)







The template

And lastly we need a template:

{% extends "base.html" %}

{% block content %}
    <form action="" method="get">
        {{ filter.form.as_p }}
        <input type="submit" />
    </form>
    {% for obj in filter %}
        {{ obj.name }} - ${{ obj.price }}<br />
    {% endfor %}
{% endblock %}





And that’s all there is to it!  The form attribute contains a normal
Django form, and when we iterate over the FilterSet we get the objects in
the resulting queryset.



Other Meta options


Ordering using order_by

You can allow the user to control ordering by providing the
order_by argument in the Filter’s Meta class.  order_by can be either a
list or tuple of field names, in which case those are the options, or
it can be a bool which, if True, indicates that all fields that
the user can filter on can also be sorted on. An example or ordering using a list:

import django_filters

class ProductFilter(django_filters.FilterSet):

    price = django_filters.NumberFilter(lookup_type='lt')

    class Meta:
        model = Product
        fields = ['price', 'release_date']
        order_by = ['price']





If you want to control the display of items in order_by, you can set it to
a list or tuple of 2-tuples in the format (field_name, display_name).
This lets you override the displayed names for your ordering fields:

order_by = (
    ('name', 'Company Name'),
    ('average_rating', 'Stars'),
)





Note that the default query parameter name used for ordering is o.  You
can override this by setting an order_by_field attribute on the
FilterSet class to the string value you would like to use.



Custom Forms using form

The inner Meta class also takes an optional form argument.  This is a
form class from which FilterSet.form will subclass.  This works similar to
the form option on a ModelAdmin.




Non-Meta options

Note that these options do not go in the Meta class, they are specified directly
in your FilterSet class.


strict

The strict option controls whether results are returned when an invalid
value is specified by the user for any filter field. By default, strict is
set to True meaning that an empty queryset is returned if any field contains
an invalid value. You can loosen this behavior by setting strict to
False which will effectively ignore a filter field if its value is invalid.




Overriding FilterSet methods


get_ordering_field()

If you want to use a custom widget, or in any other way override the ordering
field you can override the get_ordering_field() method on a FilterSet.
This method just needs to return a Form Field.

Ordering on multiple fields, or other complex orderings can be achieved by
overriding the Filterset.get_order_by() method. This is passed the selected
order_by value, and is expected to return an iterable of values to pass to
QuerySet.order_by. For example, to sort a User table by last name, then
first name:

class UserFilter(django_filters.FilterSet):
    class Meta:
        order_by = (
            ('username', 'Username'),
            ('last_name', 'Last Name')
        )

    def get_order_by(self, order_value):
        if order_value == 'last_name':
            return ['last_name', 'first_name']
        return super(UserFilter, self).get_order_by(order_value)








Generic View

In addition to the above usage there is also a class-based generic view
included in django-filter, which lives at django_filters.views.FilterView.
You must provide either a model or filterset_class argument, similar to
ListView in Django itself:

# urls.py
from django.urls import re_path
from django_filters.views import FilterView
from myapp.models import Product

urlpatterns = [
    re_path(r'^list/$', FilterView.as_view(model=Product)),
]





You must provide a template at <app>/<model>_filter.html which gets the
context parameter filter.  Additionally, the context will contain
object_list which holds the filtered queryset.

A legacy functional generic view is still included in django-filter, although
its use is deprecated.  It can be found at
django_filters.views.object_filter.  You must provide the same arguments
to it as the class based view:

# urls.py
from django.urls import re_path
from myapp.models import Product

urlpatterns = [
    re_path(r'^list/$', 'django_filters.views.object_filter', {'model': Product}),
]





The needed template and its context variables will also be the same as the
class-based view above.





            

          

      

      

    

  

    
      
          
            
  
Release history and notes

Sequence based identifiers [http://en.wikipedia.org/wiki/Software_versioning#Sequence-based_identifiers]
are used for versioning (schema follows below):

major.minor[.revision]






	It’s always safe to upgrade within the same minor version (for example, from
0.3 to 0.3.4).


	Minor version changes might be backwards incompatible. Read the
release notes carefully before upgrading (for example, when upgrading from
0.3.4 to 0.4).


	All backwards incompatible changes are mentioned in this document.





0.4.1

2023-02-23


	Fix issue with adding help_text.






0.4.0

2022-12-24


	Drop support for Python < 3.7.


	Drop support for Django < 2.2.


	Tested against Python 3.9, 3.10 and 3.11.


	Tested against Django 3.1, 3.2, 4.0 and 4.1.


	Apply black, isort and ruff.


	Fix GitHub CI.






0.3.5

2020-03-23


	Tested against Python 3.8.


	Tested against Django 3.0.






0.3.4

2019-04-04


	Using lazy queries where possible.






0.3.3

2019-04-02


	Tested against Django 2.2.






0.3.2

2019-04-01


	Fixes in class-based views.


	Addition to docs.






0.3.1

2019-03-26


	More tests.


	Addition to docs.






0.3

2019-03-25

Got status beta


Note

Namespace changed from django_filters_mongoengine to
django_mongoengine_filter. Modify your imports accordingly.




	Clean up.


	Added docs, manifest, tox.






0.2

2019-03-25


	Working method filters.






0.1

2019-03-25


	Initial alpha release.








            

          

      

      

    

  

    
      
          
            

Index



 




            

          

      

      

    

  

    
      
          
            
  
Documentation

Contents:



	django-mongoengine-filter
	Requirements

	Installation

	Usage

	Development
	Testing

	Running MongoDB

	Writing documentation





	License

	Support

	Author

	Documentation
	Filter Reference
	Filters
	CharFilter

	BooleanFilter

	ChoiceFilter

	MultipleChoiceFilter

	DateFilter

	DateTimeFilter

	TimeFilter

	ModelChoiceFilter

	ModelMultipleChoiceFilter

	NumberFilter

	RangeFilter

	DateRangeFilter

	AllValuesFilter





	Core Arguments
	name

	label

	widget

	action

	lookup_type

	distinct

	exclude

	**kwargs









	Widget Reference
	LinkWidget





	Using django-mongoengine-filter
	The model

	The filter

	The view

	The URL conf

	The template

	Other Meta options
	Ordering using order_by

	Custom Forms using form





	Non-Meta options
	strict





	Overriding FilterSet methods
	get_ordering_field()





	Generic View





	Release history and notes
	0.4.1

	0.4.0

	0.3.5

	0.3.4

	0.3.3

	0.3.2

	0.3.1

	0.3

	0.2

	0.1









	Indices and tables





	Filter Reference
	Filters
	CharFilter

	BooleanFilter

	ChoiceFilter

	MultipleChoiceFilter

	DateFilter

	DateTimeFilter

	TimeFilter

	ModelChoiceFilter

	ModelMultipleChoiceFilter

	NumberFilter

	RangeFilter

	DateRangeFilter

	AllValuesFilter





	Core Arguments
	name

	label

	widget

	action

	lookup_type

	distinct

	exclude

	**kwargs









	Widget Reference
	LinkWidget





	Using django-mongoengine-filter
	The model

	The filter

	The view

	The URL conf

	The template

	Other Meta options
	Ordering using order_by

	Custom Forms using form





	Non-Meta options
	strict





	Overriding FilterSet methods
	get_ordering_field()





	Generic View





	Release history and notes
	0.4.1

	0.4.0

	0.3.5

	0.3.4

	0.3.3

	0.3.2

	0.3.1

	0.3

	0.2

	0.1











Indices and tables


	Index


	Module Index


	Search Page







            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          django-mongoengine-filter
          
            		
              Requirements
            


            		
              Installation
            


            		
              Usage
            


            		
              Development
              
                		
                  Testing
                


                		
                  Running MongoDB
                


                		
                  Writing documentation
                


              


            


            		
              License
            


            		
              Support
            


            		
              Author
            


            		
              Documentation
              
                		
                  Filter Reference
                


                		
                  Widget Reference
                


                		
                  Using django-mongoengine-filter
                


                		
                  Release history and notes
                


              


            


            		
              Indices and tables
            


          


        


        		
          Filter Reference
          
            		
              Filters
              
                		
                  CharFilter
                


                		
                  BooleanFilter
                


                		
                  ChoiceFilter
                


                		
                  MultipleChoiceFilter
                


                		
                  DateFilter
                


                		
                  DateTimeFilter
                


                		
                  TimeFilter
                


                		
                  ModelChoiceFilter
                


                		
                  ModelMultipleChoiceFilter
                


                		
                  NumberFilter
                


                		
                  RangeFilter
                


                		
                  DateRangeFilter
                


                		
                  AllValuesFilter
                


              


            


            		
              Core Arguments
              
                		
                  name
                


                		
                  label
                


                		
                  widget
                


                		
                  action
                


                		
                  lookup_type
                


                		
                  distinct
                


                		
                  exclude
                


                		
                  **kwargs
                


              


            


          


        


        		
          Widget Reference
          
            		
              LinkWidget
            


          


        


        		
          Using django-mongoengine-filter
          
            		
              The model
            


            		
              The filter
            


            		
              The view
            


            		
              The URL conf
            


            		
              The template
            


            		
              Other Meta options
              
                		
                  Ordering using order_by
                


                		
                  Custom Forms using form
                


              


            


            		
              Non-Meta options
              
                		
                  strict
                


              


            


            		
              Overriding FilterSet methods
              
                		
                  get_ordering_field()
                


              


            


            		
              Generic View
            


          


        


        		
          Release history and notes
          
            		
              0.4.1
            


            		
              0.4.0
            


            		
              0.3.5
            


            		
              0.3.4
            


            		
              0.3.3
            


            		
              0.3.2
            


            		
              0.3.1
            


            		
              0.3
            


            		
              0.2
            


            		
              0.1
            


          


        


      


    
  

_static/minus.png





_static/plus.png





_static/file.png





